Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

Weighted p-value adjustments for animal carcinogenicity trend test.


Chen, J.J., Lin, K.K., Huque, M. and Arani, R.B.

Biometrics, 56(2), 586-592 (2000).

A typical animal carcinogenicity experiment routinely analyzes approximately 10-30 tumor sites. Comparisons of tumor responses between dosed and control groups and dose-related trend tests are often evaluated for each individual tumor site/type separately, p-Value adjustment approaches have been proposed for controlling the overall Type I error rate or familywise error rate (FWE). However, these adjustments often result in reducing the power to detect a dose effect. This paper proposes using weighted adjustments bg assuming that each tumor can be classified as either class A or class B based on Drier considerations. The tumors in class A, which are considered as more critical endpoints, are given less adjustment. Two weighted methods of adjustments are presented, the weighted p adjustment and weighted alpha adjustment. A Monte Carlo simulation shows that both weighted adjustments control the FWE well. Further more, the power increases if a treatment-dependent tumor is analyzed as in class A tumors and the power decreases if it is analyzed as in class B tumors. A data set front a National Toxicology Program (NTP), 2-year animal carcinogenicity experiment with 13 tumor types:sites observed in male mice was analyzed using the proposed methods. The modified poly-3 test was used to test for increased carcinogenicity since it has been adopted by the NTP as a standard test for a dose-related trend. The unweighted adjustment analysis concluded that there was no statistically significant dose-related trend. Using the Feed and Drug Administration classification scheme for the weighted adjustment analyses, two rare tumors (with background rates of 1% or less) were analyzed as class A tumors and 11 common tumors (with background rates higher than 1%) as class B. Both weighted analyses showed a significant dose-related trend for one rare tumor.