Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

Incorporating measures of variability and uncertainty into the prediction of in vivo hepatic clearance from in vitro data.


Nestorov, I., Gueorguieva, I., Jones, H.M., Houston, B. and Rowland, M.

Drug Metabolism and Disposition, 30(3), 276-282 (2002).

he existing procedures for quantitative in vitro-in vivo clearance prediction can be significantly biased either by totally neglecting the existing variability and uncertainty by using mean parameter values or by implementing Monte Carlo simulation with statistical distribution of the parameters reconstructed from very small sets of data. The aim of the present study is to develop a methodology for the prediction of in vivo hepatic clearance in the presence of semiquantitative or qualitative data and accounting for the existing uncertainty and variability. The method consists of two steps: 1) transformation of the information available into fuzzy sets (fuzzification); and 2) computation of the in vivo clearance using arithmetic operations with fuzzy sets. To illustrate the approach, rat hepatocyte and microsomal data for eight benzodiazepine compounds are used. A comparison with a standard Monte Carlo procedure is made. The methodology proposed can be used when Monte Carlo simulation may be biased or cannot be Implemented. The obtained fuzzy in vivo clearance can be used subsequently in fuzzy simulations of pharmacokinetic models.