Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

In vitro analysis of human drug glucuronidation and prediction of in vivo metabolic clearance.


Soars, M.G., Burchell, B. and Riley, R.J.

Journal of Pharmacology and Experimental Therapeutics, 301(1), 382-390 (2002).

The glucuronidation of a number of commonly used hepatic uridine diphosphate glucuronosyltransferase drug substrates has been studied in human tissue microsomes. Prediction of in vivo hepatic drug glucuronidation from liver microsomal data yielded a consistent 10-fold underprediction. Consideration of protein binding was observed to be pivotal when predicting in vivo glucuronidation for acid substrates. Studies using human intestinal microsomes demonstrated the majority of drugs to be extensively glucuronidated such that the intrinsic clearance (CLint) of ethinylestradiol (CLint = 1.3 mul/min/mg) was twice that obtained using human liver microsomes (CLint = 0.7 mul/min/ mg). The potential extrahepatic in vivo glucuronidation was calculated for a range of drug substrates from human microsomal data. These results indicate the contribution of intestinal drug glucuronidation to systemic drug clearance to be much less than either hepatic or renal glucuronidation. Therefore, data obtained with intestinal microsomes may be misleading in the assessment of the contribution of this organ to systemic glucuronidation. The use of hepatocytes to assess metabolic stability for drugs predominantly metabolized by glucuronidation was also investigated. Metabolic clearances for a range of drugs obtained using fresh preparations of human hepatocytes predicted accurately hepatic clearance reported in vivo. The use of cryopreserved hepatocytes as an in vitro tool to predict in vivo metabolism was also assessed with an excellent correlation obtained for a number of extensively glucuronidated drugs (R-2 = 0.80, p < 0.001).