Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

An integrated approach to the prediction of systemic toxicity using computer-based biokinetic models and biological In vitro test methods: overview of a prevalidation study based on the ECITTS project.


DeJongh, J., Forsby, A., Houston, J.B., Beckman, M., Combes, R. and Blaauboer, B.J.

Toxicology in Vitro, 13(4-5), 549-554 (1999).

Chemical toxicity was estimated by integrating in vitro study results with physiologically-based biokinetic models for eight neurotoxic compounds (benzene, toluene, lindane, acrylamide, parathion/oxon, caffeine, diazepam and phenytoin). In vitro studies on general and specific neurotoxicity were performed and biotransformation and tissue–blood distribution studies were used in modelling the biokinetic behaviour of the compounds. Subsequently, neurotoxicity was estimated from the integrated in vitro and kinetic studies. These results were compared with in vivo data from the literature on minimal neurotoxicity for these compounds, such as lowest-observed-effect levels (LOELs). The discrepancy between estimated and experimental LOELs ranged from 2- to 10-fold. LOEL estimates for compounds with a relatively low toxicity were more accurate than for compounds with a relatively high toxicity. LOELs for the most active compounds could only be established after consideration of additional in vitro results from the literature. The present study has generated encouraging results on the risk assessment of chemicals from in vitro studies and computer simulations and has identified some key directions for future research.