Home banner
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

The Journal


Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740

Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

Insulin and IGF-1 Mediated Inhibition of Apoptosis in CHO Cells Grown in Suspension in a Protein-free Medium

Lars Adamson and Erik Walum

When Chinese hamster ovary (CHO) cells were grown in suspension and deprived of serum, 40% of them became apoptotic after 72 hours, as determined by flow cytometry analysis of TUNEL-labelled cells. Cell viability, assessed by erythrocin B staining, decreased correspondingly. An increase in the total fraction of cells expressing interleukin converting enzyme (ICE; caspase 1), B-cell lymphoma 2 protein (Bcl-2,) and Bcl-2 associated x protein (Bax) was shown by antibody probing and subsequent flow cytometry. The p53 tumour suppressor gene product level remained low within the cell population. Insulin-like growth factor-1 (IGF-1) inhibited cell death in a concentration-dependent manner, and at 20ng/ml, cell viability was maintained close to 100% and no apoptotic cells were detected. Also, insulin was shown to inhibit cell death — at 1.0µg/ml, cell viability was 95%, whereas 10% of the cells stained for apoptosis. At the highest concentrations of IGF-1 and insulin, the expression of ICE, Bcl-2 and Bax was fully suppressed, whereas the p53 product level increased, despite still being detectable in a minority of cells. Under these conditions, IGF-1 may increase p53 expression to restrain abnormal cell proliferation. It is concluded that special attention should be paid to exposure and culture conditions that induce acquired susceptibility to a toxic insult, during the development and validation of cell-based assays.