Home banner
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

The Journal


Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740

Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

Cadmium-induced Inhibition of ADHstimulated Ion Transport in Cultured Kidneyderived Epithelial Cells (A6)

Henning F. Bjerregaard and Brian Faurskov

An epithelial cell line (A6) derived from the distal tubule of toad kidney, was used to study the effect of cadmium (Cd2+) on the increase in active ion transport induced by antidiuretic hormone (ADH). Addition of Cd2+ (1mM) to the basolateral solution of A6 epithelia generated an immediate and transient increase in active ion transport, measured as short circuit current (SCC). This increase was not affected by prior addition of ADH. However, there was a distinct inhibition of ADH-induced stimulation of SCC in epithelia pre-treated with Cd2+. Since cAMP serves as an intracellular messenger for ADH by increasing the ion permeability of the apical membrane in A6 epithelial cells, the effects of Cd2+ on enzymes involved in cAMP metabolism were measured. The results showed that Cd2+ markedly inhibits cAMP production by inhibiting adenylate cyclase (which had been stimulated with forskolin, magnesium or a nonhydrolysed GTP-analog), indicating that Cd2+ inhibits the catalytic subunit of adenylate cyclase. Furthermore, degradation of cAMP by phosphodiesterase was not stimulated by Cd2+, also suggesting that the mechanism by which Cd2+ inhibits the ADH-induced ion transport could be through inhibition of adenylate cyclase. Taken together, these results indicate that, in addition to the well-known toxic effect on the proximal tubule, Cd2+ could also have an effect on the distal part of the kidney, where the important hormonal regulation of salt and water homeostasis takes place.