Home banner
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

The Journal


Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740

Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

Rat Hepatocyte Suspensions as a Suitable In Vitro Model for Studying the Biotransformation of Histone Deacetylase Inhibitors

Greetje Elaut, Gabriëlla Török, Peggy Papeleu, Tamara Vanhaecke, Georges Laus, Dirk Tourwé and Vera Rogiers

This paper focuses on the use of liver-derived in vitro systems for biotransformation studies during early drug development, as exemplified by the two molecules recently studied in our laboratory: Trichostatin A (TSA) and its structural analogue 5-(4-dimethylaminobenzoyl)aminovaleric acid hydroxamide (4-Me2N-BAVAH). Phase I biotransformation of TSA, a histone deacetylase inhibitor with promising antifibrotic and antitumoural properties, was investigated in liver microsomal (rat and human) and in hepatocyte (rat) suspensions. Within 40 minutes, 50µM of TSA was completely metabolised by 2 × 106 hepatocytes/ml. Reduction of the hydroxamic acid function to its corresponding amide and N-demethylation were the two major phase I biotransformation pathways, while hydrolysis products of TSA were minor metabolites. Lower concentrations of TSA (5µM and 25µM) were N-demethylated faster. Liver microsomes, however, metabolised TSA incompletely with the formation of two major metabolites, N-mono- and N-didemethylated TSA. Unlike TSA, 4-Me2N-BAVAH (50µM) could still be detected after 3 hours of incubation with 2 × 106 rat hepatocytes/ml suspension. Hydrolysis and reduction of the hydroxamic acid function to its corresponding acid and amide, respectively, were shown to be the major phase I biotransformation pathways. Lower concentrations of 4-Me2N-BAVAH were hydrolysed more readily. 4-Me2N-BAVAH and its metabolites were less subjected to N-demethylation than TSA.