Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

An Evaluation of the In Vitro Cytotoxicities of 50 Chemicals by using an Electrical Current Exclusion Method versus the Neutral Red Uptake and MTT Assays


Toni Lindl, Birgit Lewandowski, Sonya Schreyögg and Andrea Stäudte

According to the 2001 National Institutes of Health guidance document on using in vitro data to estimate in vivo starting doses for acute toxicity, the performance of the electrical current exclusion method (ECE) was studied for its suitability as an in vitro cytotoxicity test. In a comparative study, two established in vitro assays based on the quantification of metabolic processes necessary for cell proliferation or organelle integrity (the MTT/WST-8 [WST-8] assay and the neutral red uptake [NRU] assay), and two cytoplasm membrane integrity assays (the trypan blue exclusion [TB] and ECE methods), were performed. IC50 values were evaluated for 50 chemicals ranging from low to high toxicity, 46 of which are listed in Halle’s Registry of Cytotoxicity (RC). A high correlation was found between the IC50 values obtained in this study and the IC50 data published in the RC. The assay sensitivity was highest for the ECE method, and decreased from the WST-8 assay to the NRU assay to the TB assay. The consistent results of the ECE method are based on technical standardisation, high counting rate, and the ability to combine cell viability and cell volume analysis for detection of the first signs of cell necrosis and damage of the cytoplasmic membrane caused by cytotoxic agents.