Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

Retinal Pigment Epithelial Cell Cultures as a Tool for Evaluating Retinal Toxicity In Vitro


Hanna Tähti, Hanna Mäenpää, Lotta Salminen and Tarja Toimela

This article reviews in vitro testing of retinal toxicity in retinal pigment epithelium (RPE) cell cultures. It is based on the literature on RPE cell cultures and on our recent studies on the retinal toxicity of selected amphiphilic drugs. The RPE plays a major role in maintaining the homeostasis and health of the retina. Various pharmacological agents are known to cause adverse effects in RPE cells. For example, long-term treatment with chloroquine in patients with rheumatoid arthritis has induced retinopathy, and tamoxifen, a drug that is commonly used in the treatment of advanced breast cancer and in the prevention of breast cancer among high-risk women, has been reported to cause retinal changes and impaired vision. During our research, we have developed novel in vitro methods for evaluating the retinal toxicity of xenobiotics. We have used a pig RPE primary culture and a human RPE cell line (D407), which retain epithelial cell characteristics. They form a layer of hexagonal cells with intercellular junctions, and possess a keratin-containing cytoskeleton. They are both good models for determining the retinal cell toxicity of test compounds. Further studies on phagocytic activity, lysosomal enzyme activity and glutamate uptake might generate new methods for the toxicological evaluation of the retinal side-effects of drugs in vitro.