Home banner
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

The Journal


Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740

Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

New Aspects of Cholecystokinin Processing and Visualisation in the Rat Brain by Using Antibodies Raised in Chickens and Rabbits

Rüdiger Schade, Peter Henklein, Christoph Harms, Ludwig Jonas, Marion Lautenschlager, Torsten Schöneberg, Andreas de Weerth, Andreas Hlinak and Heide Hörtnagl

Neuropeptides such as cholecystokinin (CCK) are subjected to a stepwise enzymic degradation (peptide processing) during axonal transport from the somata to the nerve terminals. This results in a continual change in the primary, secondary and tertiary structures of the peptide. Thus, an antibody raised against a selected sequence of the propeptide may recognise the antigen only at a certain stage of its “ontogenesis”. To address these difficulties, a set of antibodies with differing specificities and origins (chicken, rabbit) were used to visualise neuronal CCK by immunohistochemical methods in rat–brain sections (RBS) and in rat primary neuronal cultures (PNC). The specificity of the antibodies was analysed by using a dot-blot assay and a radioimmunoassay. Marked differences in the reactivities of the various antibodies were observed and related to the antigen used, inter-individual variations and the animal species. In the cortex, various types of CCK-immunoreactive neurons were found, including spindle-shaped or button-shaped neurons and pseudo-unipolar neurons. However, in contrast to mammalian antibodies, several of the chicken antibodies recognised cortical pyramidal neurons in both RBS and PNC without pretreatment with colchicine. Evidence has been obtained in both RBS and PNC that an antibody with a defined specificity may not visualise the entire neuron, but only distinct parts of it, possibly depending on the actual molecular structure of the neuropeptide present at a specific locus of the neuron. A complete mapping of a neuronal peptide that is processed during axonal transport can only be achieved by using a set of different antibody-specificities.