Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

A Comparative Study of the Toxicity of Mercury Dichloride and Methylmercury, Assayed by the Frog Embryo Teratogenesis Assay–Xenopus (FETAX)


Mariangela Prati, Rosalba Gornati, Patrizia Boracchi, Elia Biganzoli, Salvador Fortaner, Romano Pietra, Enrico Sabbioni and Giovanni Bernardini

The Frog Embryo Teratogenesis Assay–Xenopus (FETAX) is a powerful and flexible bioassay that makes use of the embryos of the anuran amphibian Xenopus laevis. The FETAX can detect xenobiotics that affect embryonic development, when mortality, teratogenicity and growth inhibition are used as endpoints. The FETAX was used to compare the embryotoxic and teratogenic potentials of two chemical species of mercury: inorganic mercury(II) chloride (HgCl2) and organic methylmercury chloride (MeHgCl). MeHgCl, with an estimated median lethal concentration [LC50] of 0.313µM and a median teratogenic concentration [TC50] of 0.236µM, showed a higher toxicity than HgCl2, with estimated LC50 and TC50 values of 0.601µM and 0.513µM, respectively. On the basis of these results, HgCl2 and MeHgCl can be classified as “slightly teratogenic compounds”, as the ratio of LC50/TC50 is less than 1.5. There was a significant deviation from the commonly described monotonic behaviour of the concentration–response curves, suggesting a hormetic effect of both species of mercury. Uptake experiments, followed by neutron activation analysis, showed a higher incorporation of mercury in embryos exposed to MeHgCl compared with those exposed to HgCl2. Interestingly, Hg-exposed embryos showed a higher content of selenium and zinc than did control embryos.