Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

A Method for the In Vitro Exposure of Human Cells to Environmental and Complex Gaseous Mixtures: Application to Various Types of Atmosphere


Michaela Aufderheide, Jan W. Knebel and Detlef Ritter

The application of in vitro methods to the analysis of the effects of airborne materials is still limited, because there are no generally accepted concepts and technologies for efficiently exposing adherent growing cells to test atmospheres, especially those comprising complex mixtures of gaseous and particulate phases. The introduction of in vitro research into the field of inhalation toxicology offers a unique possibility for using human cells and tissues for pre-screening studies, thus reducing the necessity for animal experiments, and cutting the numbers of animals used in toxicological testing. We therefore developed a novel experimental concept that uses an exposure device based on the cell cultivation system CULTEX (Patent No. DE 198011763; PCT/EP99/00295). This allowed us to investigate environmental atmospheres, which were chemically and physically unmodified, in an in vitro system, by exposing the target cells directly at the air/liquid interface. The exposure device itself is small and flexible enough to be connected to a variety of aerosol-generating systems without the need for an incubator, as it fulfils all the requirements for maintaining cell viability over a defined period. The general applicability and the sensitivity of this in vitro approach for testing various generated atmospheres under the same cell-exposure conditions were demonstrated by studying dose-dependent cytotoxic effects in human lung epithelial cells exposed to air contaminated with single gases or complex mixtures, such as diesel exhaust fumes and side-stream cigarette smoke.