Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

In Vitro Phototoxicity Testing: Development and Validation of a New Concentration Response Analysis Software and Biostatistical Analyses Related to the Use of Various Prediction Models


Björn Peters and Hermann-Georg Holzhütter

As demonstrated in several validation studies, the dermal phototoxic potential of chemicals in humans can be effectively assessed by in vitro methods. The core of these methods is to monitor dose–response curves of a chemical in the absence and presence of light, to quantify the difference between these two curves by appropriate measures (either the photo-irritancy factor [PIF], or the mean photo effect [MPE]), and to use these measures as predictors of in vivo phototoxicity. We present new concentration–response analysis software for in vitro phototoxicity testing, which runs on current personal computers, and takes into account all the limitations identified when using a former program. We also demonstrate the validity and robustness of this new software by applying it retrospectively to all data available from two phases of the EU/COLIPA validation trial for the 3T3 neutral red update in vitro phototoxicity test. Some frequently raised questions pertaining to the use of prediction models in phototoxicity testing are addressed, including: the necessity of using prediction models based on a cut-off; whether it is justifiable to use sharp prediction cut-off values; whether there is a biostatistical justification for the highest concentration of the test chemical; and whether repeated testing of a chemical is required.