Home banner
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

The Journal


Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740

Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

Evaluation of a Flat Membrane Hepatocyte Bioreactor for Pharmacotoxicological Applications: Evidence that Inhibition of Spontaneously Produced Nitric Oxide Improves Cell Functionality

Nikolina Canová, Eva Kmonícková, Dagmar Lincová, Libor Vítek and Hassan Farghali

A laboratory-scale bioreactor was re-evaluated, with the aim of improving its use for the perfused culture of rat hepatocytes. In contrast to conventional culture systems, the flat membrane bioreactor (FMB) showed good functionality and biochemical competence during 2–3 days. Hepatocytes cultured in the FMB, specifically in a “sandwich” configuration, were functionally stable, as shown by a high rate of urea biosynthesis after challenge with NH4Cl, a low alanine-aminotransferase leakage and suppressed spontaneous nitric oxide (NO) production. Moreover, the time-course of the disappearance of cyclosporin A (CsA) from the perfusate demonstrated the high biotransformation capacity of cells in the FMB. The effect of CsA on the modulation of urea and spontaneous NO production demonstrated flexibility, in that minor changes could be observed at diverse time intervals and in a non-destructive way. The monitoring of nitrite levels during various steps of isolation and culture suggested that spontaneously produced NO has a negative impact on hepatocyte metabolic and functional integrity. In spite of the sophisticated techniques that are being used for the preparation of bioreactors, with hepatocytes surviving for longer periods, our data have shed light on some factors that could be important for the successful use of similar models for pharmacotoxicological and other biomedical applications.