Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

Read-across Estimates of Aquatic Toxicity for Selected Fragrances


Emiel Rorije, Tom Aldenberg and Willie Peijnenburg

Read-across as a non-animal testing alternative for the generation of risk assessment data can be useful in those cases where quantitative structure–activity relationship (QSAR) models are not available, or are less well developed. This paper provides read-across case studies for the estimation of the aquatic toxicity of five different fragrance substances, and proposes a pragmatic approach for expressing uncertainty in read-across estimates. The aquatic toxicity estimates and their uncertainties are subsequently used to estimate fresh water compartment Predicted No-Effect Concentrations (PNECs), with their two-sided 90% Confidence Intervals (CIs). These PNECs can be used directly in risk assessment. The results of the musk fragrance read-across cases (musk xylene, musk ketone and galaxolide) are compared to experimentally derived PNEC values. The read-across estimates made by using similarity in a hypothesised mechanism of action for (acute) toxicity of musk xylene gave a PNEC of 2μg/L (90% CI 0.0004–13.5μg/L) with the Species Sensitivity Distribution (SSD) approach. This estimated value is 1.8 times above the experimentally-based fresh water PNEC of 1.1μg/L. For musk ketone and galaxolide, the PNEC values based on the SSD approach and employing a toxicity mechanism-based read-across were 2.0 times greater, and 4.9 times below the experimentally derived PNEC values, respectively.

Full text pdf 41(1), 77–90

 

Supplementary information