Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

The Use of In Vitro Systems to Assess Cancer Mechanisms and the Carcinogenic Potential of Chemicals


Damien Breheny, Oluwatobiloba Oke and Stephen P. Faux

Carcinogenesis is a highly complex, multi-stage process that can occur over a relatively long period before its clinical manifestation. While the sequence in which a cancer cell acquires the necessary traits for tumour formation can vary, there are a number of mechanisms that are common to most, if not all, cancers across the spectrum of possible causes. Many aspects of carcinogenesis can be modelled in vitro. This has led to the development of a number of mechanistically driven, cell-based assays to assess the pro-carcinogenic and anti-carcinogenic potential of chemicals. A review is presented of the current in vitro models that can be used to study carcinogenesis, with examples of cigarette smoke testing in some of these models, in order to illustrate their potential applications. We present an overview of the assays used in regulatory genotoxicity testing, as well as those designed to model other aspects that are considered to be hallmarks of cancer. The latter assays are described with a view to demonstrating the recent advances in these areas, to a point where they should now be considered for inclusion in an overall testing strategy for chemical carcinogens.

Full text pdf 39(3), 233–255