Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

Responses of Human Gingival and Periodontal Fibroblasts to a Low-Zinc Environment


Emil Rudolf and Miroslav Červinka

Morphology, motility, proliferation rate and markers of oxidative stress in primary human gingival fibroblasts (GF) and periodontal ligamental fibroblasts (PDL-F) grown in zinc-deficient cultivation medium (ZDM), were studied over a 5-week culture period. A low-zinc environment effectively reduced the total, as well as the free, intracellular zinc content in both cell types, over the course of the experiment. Decreased intracellular zinc content resulted in altered cellular morphology, reduced motility, and rearrangement of actin and tubulin in the cytoskeleton. In addition, fibroblasts with low zinc content exhibited decreased proliferation, accompanied by changes in cell cycle distribution, expression of specific biochemical markers, increased oxidative stress and the activation of caspase-3. Supplementation of ZDM with exogenous zinc prevented the loss of intracellular zinc, while also restoring the morphology, cell proliferation and mitogenic signalling of the cultured cells. Moreover, such supplemented cells were protected against oxidative stress and cell death. Of the two primary cell cultures examined, GF were more sensitive to decreased intracellular zinc content, when compared to PDL-F. The results obtained suggest that the human primary cell cultures can be useful for the longer-term evaluation of the effects of nutritional factors originating from the environment.

Full text pdf 38(2), 119–138