Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

An Immunologic Model for Rapid Vaccine Assessment A Clinical Trial in a Test Tube


Russell G. Higbee, Anthony M. Byers, Vipra Dhir, Donald Drake, Heather G. Fahlenkamp, Jyoti Gangur, Anatoly Kachurin, Olga Kachurina, Del Leistritz, Yifan Ma, Riyaz Mehta, Eric Mishkin, Janice Moser, Luis Mosquera, Mike Nguyen, Robert Parkhill, Santosh Pawar, Louis Poisson, Guzman Sanchez-Schmitz, Brian Schanen, Inderpal Singh, Haifeng Song, Tenekua Tapia, William Warren and Vaughan Wittman

While the duration and size of human clinical trials may be difficult to reduce, there are several parameters in pre-clinical vaccine development that may be possible to further optimise. By increasing the accuracy of the models used for pre-clinical vaccine testing, it should be possible to increase the probability that any particular vaccine candidate will be successful in human trials. In addition, an improved model will allow the collection of increasingly more-informative data in pre-clinical tests, thus aiding the rational design and formulation of candidates entered into clinical evaluation. An acceleration and increase in sophistication of pre-clinical vaccine development will thus require the advent of more physiologically-accurate models of the human immune system, coupled with substantial advances in the mechanistic understanding of vaccine efficacy, achieved by using this model. We believe the best viable option available is to use human cells and/or tissues in a functional in vitro model of human physiology. Not only will this more accurately model human diseases, it will also eliminate any ethical, moral and scientific issues involved with use of live humans and animals. An in vitro model, termed “MIMIC” (Modular IMmune In vitro Construct), was designed and developed to reflect the human immune system in a well-based format. The MIMIC® System is a laboratory-based methodology that replicates the human immune system response. It is highly automated, and can be used to simulate a clinical trial for a diverse population, without putting human subjects at risk. The MIMIC System uses the circulating immune cells of individual donors to recapitulate each individual human immune response by maintaining the autonomy of the donor. Thus, an in vitro test system has been created that is functionally equivalent to the donor’s own immune system and is designed to respond in a similar manner to the in vivo response.

Full text pdf 37(S1), 19–27