Home banner
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

The Journal


Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740

Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

The Automated, Accurate and Reproducible Determination of Steady-state Permeation Parameters from Percutaneous Permeation Data

Frank Niedorf, Elisabeth Schmidt and Manfred Kietzmann

Procedures for the in vitro determination of percutaneous permeation with Franz diffusion cells are widely accepted. However, the calculation of relevant endpoints, such as the steady-state flux (J) and the permeation coefficient (Papp), still depends on visual data inspection or an approximation of the steady-state flux as the maximum observed absorption rate. As both these approaches must be considered inappropriate, an automated and reproducible algorithm to analyse permeation data is presented. The method detects both lag-times and non-linear data resulting from substance accumulation in the acceptor compartment of static diffusion cells. It was evaluated by using simulated data, and data from experiments with caffeine and testosterone on bovine udder skin and human reconstituted epidermis (SkinEthic®), which represent model barriers with high and low barrier strengths, respectively. It was shown that the algorithm is a suitable method for the identification of steady-state ranges in permeation data. If used on data generated with appropriate experimental approaches, it is a reproducible and time-saving alternative to the visual analysis of diffusion data.

Full text pdf 36(2), 201–213