Home banner
Divider
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

ATLA - ISI
The Journal

 

Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740


Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

An Evaluation of a Novel Chick Cardiomyocyte Micromass Culture Assay with Two Teratogens/Embryotoxins Associated with Heart Defects


Helena S. Hurst, Richard H. Clothier and Margaret Pratten

This study was aimed at determining whether the chick cardiomyocyte micromass (MM) system could be employed to predict the teratogenicity/embryotoxicity of exogenous chemicals. Two documented teratogens/embryotoxins, sodium valproate (the sodium salt of valproic acid; VPA) and all-trans retinoic acid (tRA), were used in the initial phase of the study. White Leghorn 5-day-old embryo hearts were dissociated to produce a cardiomyocyte suspension in Dulbecco’s Modified Eagle’s Medium. Cultures were incubated at 37°C in 5% CO2 in air, and observations were made every 24 hours over 5 days, for the detection of beating. Culture viability was assessed by using the resazurin reduction assay for determining culture activity and the kenacid blue assay for determining cell number. It was found that tRA significantly reduced cell activity and beating, whilst not affecting total cell number. VPA up to 500µM induced no cytotoxicity in the MM cardiomyocyte cultures, whilst all the VPA concentrations tested reduced beating. The results demonstrate the potential of the chick cardiomyocyte MM culture assay to identify teratogens/embryotoxins that alter functionality, which may result in a teratogenic outcome, whilst not causing cytotoxicity (direct embryotoxicity). This could form part of a screen for developmental toxicity related to cardiac function, whilst limb cultures and brain cultures based on the same system could be relevant to teratogenic effects on those tissues.