Home banner
A-Z Index

Quick way to the find the information that you need...

More button
Register with FRAME

Although you do not need to register, any information you provide will be confidential and used only by FRAME to improve the website

Register button
Account Login
Forgot password?

The Journal


Alternatives to Laboratory Animals - ATLA

Download latest issue button Download back issues button Subscribe to ATLA
Contact Us

Tel icon

Tel: +44 (0)115 9584740

Tel icon

Fax: +44 (0)115 9503570

Make an Enquiry

In Vitro Effects of Certain Membrane-acting Agents on Superoxide and Hydrogen Peroxide Production, Protein Synthesis and Membrane ATPase Activity in Buffalo PMN Cells

Hemen Das, Golla Ramalinga Reddy, Tukaram More and Vineet Kumar Singh

Polymorphonuclear (PMN) cells play a key role in innate immunity, due to their ability to produce reactive oxidants such as superoxide (O2–) and hydrogen peroxide (H2O2), and to release antimicrobial proteins and peptides stored in their lysosomal granules. In the present study, the effects of the activation of buffalo PMN cells with various membrane-acting agents were evaluated in terms of O2– and H2O2 production, the activities of membrane ATPases, and protein synthesis. Studies involving the incorporation of 35S-methionine revealed significant protein-synthesising ability in resting PMN cells and in cells treated with lipopolysaccharide (LPS), as well as with opsonised zymosan (OZ). Protein synthesis, as judged by fluorography of the cytosolic fraction, showed more than 12 bands, whilst the cytoskeletal fraction showed 2–3 bands. PMN activation with concanavalin A (ConA), digitonin and sodium nitroprusside (SNP) resulted in increased O2– and H2O2 production. However, in the presence of anti-inflammatory agents such as indomethacin and cortisol, the production of O2– and H2O2 by these cells was found to decline. Studies pertaining to membrane ATPases revealed that verapamil hydrochloride (VpHCl) significantly increased total ATPase and Na+K+ATPase activity. ConA treatment yielded only a moderate level of activity. Similarly, digitonin up to 24µM also caused a significant increase in ATPase activity. Our observations indicate that these membrane-acting agents influenced oxygen-dependent and oxygen-independent microbicidal mechanisms in buffalo PMN cells.